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ABSTRACT

We present a dynamic test prioritization technique with the objective to speed up uncovering

updates to existing software and therefore, increase the rate at which faulty software can be

debugged. Our technique utilizes two types of data—the results of executing tests on prior

version of the software; and the results of executing tests on the new version which determines

the next test to be executed.

The contributions of the thesis are two-fold: understanding what constitutes an effective

ordering of tests and developing an algorithm that can and efficiently generate such order.

At its cores, the proposed dynamic ordering technique relies on two basic conjectures.

Firstly, tests that are closely related are likely to uncover similar updates/faults and tests

that are not related are likely to widen the search for updates/faults. In other words, if a

test uncovers updates in a software, i.e., its execution behavior (in terms coverage) differs

considerably between prior and current version of the software, then selecting a test closely

related to it is likely to be beneficial. Similarly, if a test does not uncover updates in a software,

it would be good to select an unrelated test to execute next to increase the chances of better

coverage. The relationship between tests are determined from the execution of tests while

testing prior versions of the software. The second conjecture is that selecting tests in the above

order will speed up uncovering bugs in the software.

We develop a baseline ordering using complete knowledge about the results of executing

tests in two different versions of the software. The baseline ordering arranges the tests in

descending order in terms of amount of changes the tests uncover between the prior and new

version of the software. We evaluate the effectiveness of this ordering (i.e., the validity of the

conjectures) by computing the rate at which the order can identify (seeded) bugs in a software–

the measurement is referred to as APFD. The baseline order produces high APFD values indicating

that the order is indeed effective. However, note that the baseline ordering can be only obtained
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if the tests are already executed in two versions of the software; the challenge is to identify the

ordering before executing the tests on the version being tested.

We have developed an algorithm that estimates the baseline ordering. We evaluate the

quality of the estimates using a rank relationship measure refer to as Order-Relationship Mea-

sure (ORM). We find that the ORM is high when call-sequences resulting from executing tests are

used for estimation. We also find that low ORM implies low APFD values for the estimate. We

have evaluated our algorithm on two non-trivial software repositories. We have investigated

the role of two important parameters (thresholds capturing the closeness relationship between

tests) in identifying high quality (high APFD) ordering and outlines how these parameters can

be statically determined based on executing tests on the prior versions of the software. Finally,

we have showed that the application of our algorithm in generating the test orders dynamically

has close to 3% overhead.
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CHAPTER 1. INTRODUCTION

1.1 Background

Most software are built iteratively where it starts off as a basic working model and additional

features are added over time. As the software undergoes change, it is vital to ensure that the

changes do not introduce any negative consequences ranging from unintended modified behavior

of existing functionality to out right execution breaking bugs 1 that causes the program to crash.

For this purpose, a suite of tests grouped into test cases are maintained and these tests are

executed upon every change to ensure sanity of the software repository. Each test would validate

a certain behavior and collective execution of all of them would ensure that the software is free

of any predictable bugs.

There are several unit testing frameworks, and each of them have their own behavior when

it comes to ordering the execution of the tests. Eg. MSTest for Visual Studio have no guarantee

when it comes to execution order [2], JUnit 3 [3] for Java runs tests in the order in which JVM

Reflections API returns the test. Some software repositories have a very rigorous series of tests,

or tests that are complicated or intensive and the end result would be they involve a lot of

time or effort to execute the entire test suite. In some cases, it is impractical to run the entire

regression test suite for every change. In such cases, prioritizing the execution of tests such

that discovery of bugs sooner than later is extremely beneficial. Even in cases where all tests

can be run in a reasonable time, it would save time in finding bugs sooner.

In an iterative development model, it is a reasonable assumption that any new errors intro-

duced would be rooted in or at least associated to newly added changes. Using that assumption

as a base, our work attempts to order tests such that sections of the software that are more

1The terms bug, fault, exception and error are will be interchangeably throughout the course of this paper
to indicate negative unintended behaviour of software
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likely to have changed are higher in the execution order than sections that are less likely to

change. The ordering takes into consideration the set of tests, the measure of their impact of

applying them on some prior version of the software and the result of applying the tests in the

version being tested. For instance, let the measure of impact of tests on a version be defined

in terms of sequence of function-calls executed by the tests. Tests with similar measures are

similar or are closely related–indicating that they test similar artifacts or feature of the soft-

ware. Next, we start with some test, say t, and deploy it in the new version, the version being

tested. We take into consideration two aspects, the measure of impact of t in the new version

and the result, whether or not the test passes (produces output as expected). If the measure of

t in the new version is markedly different from its measure in prior version or it does not pass,

then it is likely that t has been able to identify parts of the new version that resulted from

considerable updates to the prior version of the software. In this case, the next test we consider

is one that is most closely related to t; otherwise, we may consider a test that is least closely

related to t (as is typically done to increase coverage measures [4]). In short, the ordering in

which the tests are executed are decided dynamically based on the past information about the

tests and new information obtained as the tests are executed on the version being tests. Two

challenges need to be addressed carefully before this method can be deployed in practice: (a)

identify the appropriate way to measure impacts, and (b) compute the closeness relation based

on the measures efficiently to keep the overhead of finding the next best test execute low. We

address these challenges by considering simple but effective heuristics to measure the impact

and closeness relation.

1.2 Motivating Example

In the rest of the thesis, we will rely on Apache XML Security software repository [5]

to motivate and illustrate the necessity and effectiveness of our method. For instance, when

a few faults were seeded by the Software-artifact Infrastructure Repository in Apache XML

Security repository Version 1.0.71, running the tests without any change in the default defined

order resulted in only 0.18 APFD [1] detected. This means that, if we measure the amount of

undetected faults discovered against the fraction of the tests run and take an average of the
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values, each percentage of the tests only cover 18% of the total faults on average. In contrast,

when we apply our method, we were able to obtain APFD value between 0.69-0.80 depending

on the first test being used.

1.3 Problem Statement

Given a Repository, a set of tests and the call sequence of each of those tests from the

previous version of that repository, we would like to output a sequence of test order, which is

dynamically generated based on difference between call sequences among various tests in the

previous version and the difference between the call sequences of the same tests between the

two versions. The objective to find and prioritize the execution of tests, testing sections of the

repository that has changed. The end goal of this ordering is to speed up the detection of faults

by forcing tests that cover new or modified sections of the repository to run earlier.

A fault that cannot be discovered by any test is outside the scope of Test Prioritization.

1.4 Contribution

Our contributions include

• A method for correlating (closeness measure) tests based on the call sequences realized

by the test execution. The correlation can be measured by treating call sequences as sets

to find set difference, or by weighted matching among call sequences.

• An algorithm to dynamically order tests based on the similarity between them and the

result of the execution on the test subject.

• A modular framework that allows pluggable interface with regards to similarity measures

and dynamic ordering logic. This is an important aspect of the thesis as it allows for future

extension and comparison between newly developed methods for test case ordering.

• An evaluation of the test correlation and the dynamic ordering on different versions of

software. Note that, the better test correlation is likely to have better dynamic ordering,

which, in turn, will lead to better APFD values. However, for such a dynamic ordering to
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yield practical value, it must be done without prohibitively high overhead in correlation

measure and dynamic ordering.

1.5 Organization of Thesis

The rest of the paper is divided in the following sections. In Section 2, we look at the work

done so far and list their motivations and shortcomings. In Section 3, we explain our heuristic

to determine test similarity and algorithm to prioritize tests using similarity values. Section 4

describes the test repositories and presents the results of empirical evaluation on different

repositories. Section 5 summarizes the entire work and talks about any possible future work.
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CHAPTER 2. RELATED WORKS

Improving of testing performance is typically done through three ways - minimization,

selection and prioritization [6]. Test Minimization aims to identify and remove tests that are

redundant. Test Selection focuses on selecting the smallest subset of tests that fulfill certain

testing requirements. Test Prioritization aims to reorder the test execution to speed up fault

detection. Among the three optimization methods, our work would focus on Test Prioritization.

Rothermal et al. [4] formally defined Test prioritization problem as

Given the set of permutations PT of a test suite T and a function f : PT → R.

Problem: Find T ′ ∈ PT such that ∀T ′′ where T ′′ ∈ PT and T ′′ 6= T ′, f(T ′) ≥ f(T ′′).

The above definition could be applied to both Test Prioritization and Test Case Prioritiza-

tion (a test case would be a grouping of tests that test a common functionality).

2.1 Average Percentage of Faults Detected (APFD)

As the goal is to maximize the rate of fault detection, Rothermal [4] proposed a metric

called APFD to quantify the speed at which faults are detected. The APFD would be a value

between 0 and 1, and a higher value indicates a higher rate of fault detection.

There could be any number of faults, and every test could discover a number of faults

ranging from none to all of them. While there can also be faults that are not discoverable by

any test, such faults are outside the scope of Test Prioritization.

If there are n tests and m faults, Equation 2.1 gives the formula to calculate APFD

APFD = 1− (TF1 + TF2 + · · ·+ TFM )

mn
+

1

2n
(2.1)

where TFi is the position in which fault i was discovered.
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(a) Sample repository
(b) APFD for test order A-B-
C-D-E-F-G-H-I-J

(c) APFD for test order I-J-E-
B-C-D-F-G-H-A

Figure 2.2: APFD example from [1]

Figure 2.2 [1] illustrates how APFD is calculated. Figure 2.1a gives a sample repository with

8 faults (1 to 8) and 10 tests (A to J). Each fault can be discovered by one for more tests. For

instance, Fault 1 can be discovered by Tests B,C,E and I. If the execution order is A-B-C-D-

E-F-G-H-I-J, then APFD = 1− (2 + 2 + 3 + 8 + 9 + 10 + 10 + 5)/(10 ∗ 8) + 1/(2 ∗ 10) = 0.4375

(Figure 2.1c). Figure 2.1b shows us that the execution order I-J-E-B-C-D-F-G-H-A has a higher

APFD value of 0.9 as all faults are discovered with 30% of the tests are executed.

2.2 Coverage Based Methods

When Rothermal et al. [4] proposed APFD, it was to perform a comparison of various coverage

based prioritization methods [7]. Coverage metrics used are statement coverage where the goal

is to prioritize tests in an order that maximizes the rate at which statements are covered,

and function coverage where the prioritized order maximizes the rate at which functions are

covered. For these coverage metrics, the techniques used are total [8], which orders tests from

highest coverage to lowest, additional [8], which orders tests such that the incremental coverage

is maximized, fep, where mutation testing is used to come up with a fault-exposing-potential

for each test, fi, where Principal Component Analysis is used to come up with a probability of

fault occurring in each test based on their history of fault-proneness. fep and fi are methods

introduced by the authors here. The authors evaluate the methods empirically, and present an

analysis of the results which suggest that additional techniques provide the best performance

and fi methods provide the best results.
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Elbaum et al. [1] expand on the previous work by providing a categorization of the previously

mentioned techniques into general and version-specific prioritization. General Prioritization

aims to improve the rate of fault detection multiple versions, whereas Version Specific techniques

aim to maximize fault detection for a specific version. The authors also introduce a new

Prioritization technique DIFF. In DIFF, a delta difference of the changes in each file is generated

and is used as the criteria to perform prioritization on. The authors also expand upon the

empirical comparison by using new case studies.

2.3 Improvement Over Random Testing

Random testing [9] involves picking test inputs randomly and independently from the input

domain of the software. Chan et al. [10] showed that failures occur in patterns across the input

domains. These patterns in n-dimensional space could be point, where failure causing inputs are

points that are equally distributed across the domain, block, where the failures are located in a

block around a single point, and strip, where the failure causing inputs form a contiguous strip.

Chen et al. proposed Adaptive Random Testing (ART) in [11] for generating test cases, which

aimed to improve upon random testing by using the failure pattern information. Each test case

input generated would be such that they are distributed equally from a random starting point

so as to maximize the chance of finding faults.

Jiag et al. [12] applied the Adaptive Random Testing to Test Case Prioritization. Execution

would begin from a random test. A candidate set would be drawn by randomly selecting tests

from all unexecuted tests, and next test to be executed would be the test in the candidate set

that is farthest away from all executed tests. A variation of this testing would be that, if a

fault is found, the next test would be the test closest to the failed test in the candidate set.

The similarity between tests would be measured by string similarity measure between the test

codes. For instance, if testA and testB are compared, then, the measure of how similar they

are would be some string difference measure between the source code of the two tests.
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2.4 Use of Method Call Information

When a test suite for a program is executed, each test would call one to any number

of methods in the Program. Each of those methods would further call more methods. A

compilation of all such calls can give a good idea about the regions of the program executed.

If this method call information is obtained statically without running the program, all calls in

loops and conditional statements will have be considered as there is no way to determine the

status of a condition or a loop until the program is executed. This would lead to a Call Graph

which would have information on all possible methods that can be called by a certain method.

Zhang et al. [13] uses such static call graphs to perform prioritization. The authors explore the

call graphs of each tests to generate a Testing Ability (TA) score for each test. The tests are

finally run in the descending order of their TA.

If such a method call information is obtained dynamically when executing the tests, we

would get Call Sequences. The call sequences would give accurate information on exact methods

called including arguments used and depth of recursion. However, to use call sequences for

prioritization, it has to done during run time.

2.5 Other Prioritization Techniques

Various search algorithms have been used to perform Test Prioritization. The algorithms

used include Genetic Algorithm [14, 15], Hill-Climbing [15] and Mutation [15]. In case of these

techniques, a fitness function would be defined that evaluates the rate at which faults are

detected and these algorithms would work towards maximizing the fitness function.

2.6 Classification Based on Information Used

Luo et al. [16] classified various existing Test case prioritization techniques into Static

Techniques and Dynamic Techniques. Static Techniques perform prioritization solely using

information about the tests and repository that can be obtained without executing the tests.

These includes using static call graphs of tests obtained through static code analysis, calculating

similarity between various test cases using string-edit distances such as Hamming or Levenshtein
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distance and prioritizing execution of dissimilar test cases, or assigning topic-identifiers to each

tests and distributing testing evenly across topics.

Dynamic Techniques require information that can only be obtained by executing the tests.

These information can be used in addition to information that has been obtained statically.

The various Greedy Coverage Based Methods from Section 2.2 would fall under Dynamic

Techniques as the tests have to be run in order to obtain the coverage information. Other

dynamic techniques would be Adaptive Random Testing, where the next test to be executed

would be the closest or farthest test from a set of randomly selected tests, and tests that uses

search algorithms on tests to maximize fault detection.

The authors perform empirical evaluation using 30 programs on selected techniques from

both categories to compare efficiency and performance. They also compare the effect on gran-

ularity by evaluating all techniques on both test-case level (where test cases are prioritized and

every test inside a test case is executed when a test case is executed) and test level (individual

tests are prioritized independently).

The comparison between static and dynamic techniques show that each technique per-

formed differently in different situations with respect to APFD and no technique consistently

outperformed the other. The authors conclude that more work is needed to establish exactly

when each of those techniques are effective. On the other hand, the authors seem to agree that

the finer test level granularity performed better than test-case level granularity. The results

suggest that Static techniques perform better at test-case level granularity whereas Dynamic

techniques perform better at test level prioritization.

2.7 Our Work

Call sequences provide a very detailed description on the execution of a method. While

call graphs [13] have been used before for test prioritization, they have only been used with

static call information. This would not give the complete picture as not all method calls in

the call graph would be executed and some methods could be called more number of times

than others. The exact efficiency of Dynamically Obtained Method Call Sequence has not

been explored and we believe that this is a perfect area of research. As the prioritization
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can be done on the fly, given an efficient means to obtain the call sequence of a test, a quick

analysis of such call sequence can help identify the next best test to execute with reasonable

degree of confidence. Furthermore, if call sequence information from previous version of the

repository can be processed ahead of type, it could be combined with other statically obtainable

information that can be used during prioritization, so that the amount of information available

when selecting the next test to execute is high.

While works in Prioritization operate on both Test and Test-case level, there is usually no

clear reason for the choice of granularity and there are comparisons [16] that show that the

finer granularity of Test level performs better. In our work, we would operate on both levels

of granularity. As test cases are functional groupings of tests, we would use tests to identify

test cases to execute next, and inside a test case, we would perform test-level comparisons to

decide the next test to be executed.

The concept of closeness among tests have been used by Jiang et al. [11] in Adaptive Random

Testing. However, only closeness between test code is considered. As a same routine can be

written in two different ways, there is a possibility that the distance measure is not accurate,

especially in a large software, written by several people. For instance, if two tests simply differ

by the value of one variable, they would have a very high similarity value, but, it is possible that

that variable may cause an entirely different section of the code to be executed. We would try

to compare the way in which tests operate by comparing two tests using their call sequences,

so that we get an accurate comparison in terms of code sections covered by the test.



www.manaraa.com

11

CHAPTER 3. DYNAMIC TEST ORDERING

We define a Test Ordering as the sequence in which all tests in a test suite are to be

executed. The Default Ordering is the sequence in which the tests would be executed if the

ordering is to be done by the testing framework. The Prioritized Ordering would be a sequence

of execution, rearranged toward to achieve some goal (e.g., to maximize APFD [1]).

Recall that, we are considering the ordering of tests in the context where the same set of

tests are being used to evaluate the (predicable) behavior of two different versions V1 and V2 of

the same software (V2 being the newer version of the software obtained from or extended from

V1). Broadly speaking, the (prioritized) order is of two types: static and dynamic. In case of

static ordering, the information used in the ordering is solely obtained from the properties of

V1 and the result executing the tests on it; for instance, execution paths/call-graphs of the tests

executed on V1 can be used to order the tests to be executed on V2. As the name suggests,

static ordering remains unchanged as the tests are executed on V2. Dynamic ordering, on the

other hand, uses dynamically derived information (result of executing tests on V2) in tandem

with statically available information available prior to test execution (result of executing tests

on V1). For instance, success or failure of running the tests on V2, coverage information can be

used to find the ordering that is best suited for V2. Dynamic ordering, therefore, is likely to

change the ordering in which tests are deployed on-the-fly.

We believe that dynamically obtainable information on test runs is highly valuable, and

present a method for dynamic ordering technique. In this context, we also understand that any

operation that involve gathering these dynamic information must be reasonably fast, involve

negligible overhead and must be improve upon the static ordering techniques. We focus on a

dynamic test ordering technique that is efficient and is effective in exploring the ”new sections”
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of code in new version V2 (new code are likely to house the bugs that may have been introduced

in V2). In the following section, we present such a dynamic test ordering technique.

3.1 Method

Our ultimate goal is to identify an ordering that maximizes the speed in which faults are

discovered. The input to our method is the version of a repository (current version: V2) for

which we would like to maximize the speed of fault detection, the previous version (V1) of the

same repository where there are no faults discover-able by the test suite, the call sequences

of all tests from the previous version and a means to obtain the call sequence of each test in

the current version right after the test is run. As the tests ti are executed on V2, our method

computes the next best test ti+1 to execute using the above information—thus generating a

order of tests being executed dynamically. The efficiency of the prioritized ordering will be

measured in terms of maximizing the rate at which faults are detected.

We will use the difference between tests to determine the next test in the prioritized order.

In particular, if a test ti, when executed on version V2, passes, then the tests that are ”farthest”

from ti are likely candidates for ti+1. The degree of being farthest can be quantified based on

coverage metrics or line numbers being executed by the tests. The intuition behind such a

choice is to maximize the chance of faults by choosing tests that will widen the region being

tested at each step. This idea is exploited effectively by Chen et al [11] as adaptive random

testing, and has been adopted widely [17, 18, 19, 20]. In this thesis, we take this one step

further: if a test ti, when executed on version V2, covers new code fragment of V2, then the

tests that are ”closest” to ti are considered as likely candidates for ti+1. The intuition is that

tests that are similar are likely to expose similar behavioral changes in V2 (in comparison to

V1). We will show that closeness consideration improves the detection of faults (if one exists).

We operate on the call sequences of each tests as a way to measure the closeness/difference

between tests. The difference between two tests thus reduce to quantifying the difference

between two lists of Strings (i.e sequence of method calls). This gives us different possible

ways of quantifying the method calls, such as, considering or ignoring repetition, considering or

ignoring if each position of the list has the same method call. It is important to note here that
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the closeness/difference between tests are measured from the result of their executions in V1 of

the software (as V2 is being tested and closeness/difference between two tests can be quantified

only after they are both executed). Our conjecture is that this measure is a good estimate of

their measure in V2 as well.

It is important to note that as change information is unavailable on newly added tests, such

tests cannot be effectively prioritized by our technique until a later version of the repository.

3.1.1 Measuring Test Difference

The difference between tests are measured in terms of the method calls executed by the

tests. It is important that such measures can be efficiently measured to minimize the overhead

in dynamic ordering (see Section 3). We present two methods of measurement.

Set Difference. For call sequences S1 and S2, Set Difference between them is defined in

Equation 3.1

dset(S1, S2) = |S1 − S2|+ |S2 − S1| (3.1)

where |Si−Sj | is the cardinality of the set difference between the set containing the calls in Si

and the set containing the calls in Sj . Note that, the ordering between the method calls are

discarded in this measure.

Positional Weighted Difference. For call sequences S1 and S2, if at a position i, the

method call in S1 is different from that in the same position in S2, then the measure of this

difference is quantified to be inversely proportional to i. In essence, differences towards the

beginning of the sequences has more impact than the differences towards the end.

The positional weighted difference between S1 and S2 is defined by Equation 3.2.

dpos(S1, S2) =
n∑

i=1

f(S1(i), S2(i))× (n− i) (3.2)

Where the function f is

f(l1, l2) =


0 if l1 = l2

1 otherwise

(3.3)

and n is the length of the longer sequence.

We will use d∗ to indicate either dset or dpos.
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3.1.2 Outline for Prioritized Ordering

Given a set of tests T = {t1, t2, . . . , tk} and two versions V1 and V2 (V2 being the current

test subject). We measure the closeness/difference between all pairs of tests. The complexity

is O(k2 × n), where n is the longest sequence associated with the tests; however, this does not

contribute to runtime overhead as it will be computed statically. Then, we start with some

test, say ti. Consider that the Si is the call sequence associated with executing ti in V1. On

executing ti on V2, the call sequence obtained in S′i. If V2 does not pass ti or d∗(Si, S
′
i) is

greater than some pre-specified threshold STT (closeness-threshold), then we conclude that ti

has been able to explore some code fragment/dependencies that are new in V2. In that case,

the next test tj to consider is such that d∗(Si, Sj) is less than some pre-specified threshold

DTT (difference-threshold), where Sj is the call sequence in V1 associated with test tj . This

will help in identifying the tests that are likely to explore the parts of code that have been

discovered by ti to be new in V2. If, on the other hand, d∗(Si, S
′
i) is less than the STT, the

the next test test tj to consider is such that d∗(Si, Sj) is maximum among the tests still to be

executed in V2. This is likely to widen the search for new pieces of code in V2. In addition to

base the method on closeness/difference measures, the candidates for choosing the next tests

also depend on the test case to which they belong as tests cases naturally classify the tests in

terms of the test-objectives (features being tested). We will discuss the details of the algorithm

in Section 3.3. The computation (of the order O(n)) of d∗(Si, S
′
i) contributes to the runtime

overhead of the method.

3.2 Data Structure

We use a difference matrix to store the difference between all the tests in a version in order

to facilitate quick lookup of d∗(Si, Sj) for i 6= j. For n tests, the matrix is a n×n matrix. The

entry aij corresponding to the i-th row and j-th column denotes d∗(Si, Sj)

aij =


0 if i = j

d(S1, S2) otherwise

(3.4)
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As the difference property is symmetric, d∗(Sj , Si) = d∗(Si, Sj)—the matrix is upper-triagular.

For instance, Table 3.1 represents the organization of a Difference Matrix, and in order to find

the tests closest to test01, we would traverse the first column and find the test with the smallest

difference value other than the test itself.

Table 3.1: Organization of section of Difference Matrix for Positional Weighted Difference for

XML Security Repository

Tests test01 test02 test03 . . . testBad01 testBad02 testBad03

test01 0 53 75 . . . 233 124 563

test02 0 0 88 . . . 12 69 91

test03 0 0 0 . . . 62 58 800

. . . . . . . . . . . . . . . . . . . . . . . .

testBad01 0 0 0 . . . 0 4 576

testBad02 0 0 0 . . . 0 0 758

testBad03 0 0 0 . . . 0 0 0

3.3 Algorithm for generating a prioritized test order

Recall that in Section 3.1.2, we have outlined the basic intuition for generating prioritized

order of tests—tests that are closely related are likely to uncover similar updates to the software

and tests that are not closely related are likely to widen the search for updates to the software.

It is worth noting that in all practical scenarios, tests are organized in the form of test cases,

and each test case is categorized based on the functionality of the software that is being tested

by the tests in the test case. For instance, there can be n test cases: TC1, TC2, . . . , TCn, and

each TCi corresponds to some functionality Fi of the software and contains tests ti1, ti2, . . . , tim.

Therefore, in our algorithm it is important to also take into consideration the test case infor-

mation to which the tests belong—tests in the same test case are likely to be closely related.

The following steps constitutes our algorithm:

1. Start with test ti in test case TCi

2. If the difference between the result of execution of ti between the current version and old

version is above STT then
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(a) add ti to the core set of tests that are able to find differences between software

versions so far

(b) find ti’ in TCi that is closest to the core set of tests, if no such test exists, look for

some tj in a different test case TCj that is closest to the core set, and repeat from

step 1.

3. Otherwise,

(a) if core set of tests is empty, i.e., ti is the first test that is executed on the current

version, then

i. find tj in some other TCj that is furthest from ti and repeat step 1

(b) Otherwise,

i. find tj in some other test case TCj that is closest to the core set of tests and

repeat from step 1.

4. If no such t′i or tj can be obtained, then a core set of tests are reset to empty set, and

the Step 1 is re-started with another (randomly selected) test tk from a test case TCk.

Figure 3.1 illustrates the above steps. The dotted lines represents nearest tests whereas the

solid lines represent farthest tests. The numbers on the lines indicate the point in time in which

the nearest test or the farthest tests are calculated. At time 1, the algorithm finds the starting

test to have not changed significantly and looks for the farthest test. At time 2, having still

not discovered any tests with enough change, the algorithm looks for the farthest test from

both tests discovered. At time 3, the farthest test search yields a test with enough change.

More tests with enough change are discovered by looking for closest tests at time 4 and 5. The

nearest test search at time 6 yields a test without enough change, so at the next step, the

algorithm looks for a test with enough change in a different test case.

Note that, a test is added to core set if and only if it uncovers enough changes1 to the

software. One can consider different variants of conditions that indicates that a test is a good

candidate for the core. The simplest variant is presented above: one that produces changes

1Uncovering a bug will also constitute enough change.
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Figure 3.1: Illustration of the Algorithm 3.1

that can be quantified to some value above a pre-specified threshold STT. Another variant can

be a conjunction, where one conjunct is the same as above, and the other conjunct captures

whether there exists a different test t′ that is close to the current test such that that t′ also

uncovers enough changes in the software. We refer to this variant as the strict variant, as it is

likely to generate relatively small core sets.

The core set is generated incrementally till no new tests can be added to it. That happens

when tests from all test cases that are close to the core set has been selected and executed. We

refer to this phenomenon is core-saturation. Formally,

¬

∃TCi. ∃ti ∈ TCi.
∑

tj∈Core
d∗(Si, Sj) ≤ DTT


where Si, Sj are the execution sequences resulting from tests ti and tj in the previous version,

and Core is the core set that is saturated. The above presents the condition under which no

new tests can be added to an existing core set. If the above condition is violated, then there

exists some candidate tests that can be considered to be added to the core. Specifically, when

the candidate test uncovers enough changes.

Algorithm 3.1 presents the details of our algorithm. It takes as input the difference matrix

capturing the d∗(Si, Sj) (see Section 3.2), the test suite containing information about all the

test cases and tests, the thresholds STT and DTT, a test to start execution and a parameter that

defines the strictness for considering a test to be relevant.
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Algorithm 3.1: Prioritizer

Input: Difference Matrix D, Test Suite S, Start test st, Integer STT, Integer DTT,

Boolean isStrict

Output: Prioritized Order O

1 O = ””

2 currentTest = st

3 coreTests = {st}
4 testsDiffered = false

5 while Not all tests in S has been executed do

6 O = O · currentTest
7 c = execute(currentTest)

8 if c ≥ STT then

9 if testsDiffered = false then

10 testsDiffered = true

11 coreTests = currentTest

12 end

13 closestTest = D.getClosestToSetInTestCase

(coreTests, currentTest.testCase, (DTT ∗ coreTests.size))

14 if isStrict 6= true then

15 coreTests = coreTests ∪ currentTest
16 else

17 if execute(closestTest) > STT then

18 coreTests = coreTests ∪ currentTest
19 end

20 end

21 if closestTest is not empty then

22 currentTest = closestTest

23 continue

24 else

25 currentTest = findNextTest(coreTests,S,testsDiffered)

26 end

27 else

28 currentTest = findNextTest(coreTests,S,testsDiffered)

29 end

30 if currentTest is empty then

31 coreTests = ∅
32 testsDiffered = false

33 currentTest = D.getRandomUnexecutedTest()

34 coreTests = coreTests ∪ currentTest
35 end

36 end

37 return O
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Algorithm 3.1: Prioritizer - Continued

38 Function findNextTest(coreTests,S,testsDiffered):

39 candidates = D.allUnexecutedTests()

40 for each test t in coreTests do

41 suite = D.getTestsInSuiteOfTest(t)

42 candidates = candidates - suite

43 end

44 if testsDiffered then

45 test = getClosestInSetFromTests(candidates,coreTest)

46 else

47 test = getFarthestInSetFromTests(candidates,coreTest)

48 end

49 return test

50 End

We will assume that we have a method execute(), that takes a test as a parameter, runs the

test and returns amount that test has changed compared to its run in the previous version, a

method sort() that takes a sequence of tests, a criteria to sort and a target test, and returns a

reordered sequence that is sorted on the criteria provided based on their distance to the target

test.

The Difference Matrix d, will also have helper methods and it can return all tests, all tests

in the order in which they were executed in the previous version(default order), and tests by

certain test cases.

Lines 1 to 4 is the initialization of the Prioritizer. The currentTest is set to the input st

and coreTests is initialized with the same. A flag testsDiffered is initialized to false. This

flag would be used to determine if the next test to be found is to be the farthest test or nearest

test to the coreTests. We would look for the farthest test until a test that has changed more

that STT is found, after which we would look for the nearest test. O is the execution sequence

that would be returned.

The while loop at line 5 is the core loop of the Prioritizer and would execute until all

tests have been run. In line 6, we add the currentTest to O and execute the test in line

7. The execute() method would run the test, obtain the call sequence of the test, and return
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the difference between the call sequence based on the difference measure used(Set difference or

Positional weighted).

The if loop at line 8 checks if the test has changed more than the threshold STT. If the test

has not changed, we find the next test to execute at line 28 by looking for either the closest

test or the farthest test from the coreTests depending on if the flag testsDiffered. If the

test has changed, the algorithm would proceed with using the test information to identify the

next test to be run. The if loop at line 9 would set the testsDiffered flag. This would signal

the findNextTest method that a valid starting point with enough change has been found, and

further tests could be identified by looking for those tests closer to the coreTests.

getClosestToSetInTestCase() would give us the next closest test to coreTests, that

belong to the same test case as currentTest. The test must also be close enough to coreTests

by a factor that is DTT times the size of coreTests. It is necessary for the threshold to scale here

as the size of the coreTests can vary between 1 and the size of the test suite. If the prioritizer is

run in strict mode, then the closestTest must also have changed enough for the currentTest

to be considered a part of coreTests. The stricter requirement is that, in addition for the test

to have changed significantly, it must also lead to more tests that have changed significantly

to be considered important. This check is done at line 17. If a closestTest was discovered,

then closestTest becomes the currentTest and the while loop at line 5 is repeated. If not

test was found, then there is either no test that is close enough in the test case or all tests in

the test case have already been executed. In that case, we find a test in a test case that has

not been covered at line 25.

If the currentTest at line 30 is empty, that would mean that at least one test from all

test cases have been executed and there are no new test case left. In this case, we reset the

coreTests and begin anew by selecting a random unexecuted test at line 33 and setting it

to be the current and core test. The randomization would help distribute the execution by

selecting a different starting point for the next iteration.

The method findNextTest would be used to find a test that is closest to the coreTests

from a whole new test case. We obtain all unexecuted tests at line 39, and remove all tests

from test cases covered in lines 41 and 42. Now, depending on if a valid starting test has been
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located, we find either the closest test or the farthest test from the coreTests as shown in the

if block at line 44.
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CHAPTER 4. EXPERIMENTAL EVALUATION

In this section, we explain our choice of test data, list the metrics we used to evaluate

the ordering and the motivations behind the metrics, and we also show how the algorithms

stack up against the ultimate goal of speeding up fault detection. The evaluation includes

two parts, firstly we define a baseline ordering which is the ideal ordering for maximizing the

prioritization of executing changed sections of the repository first and secondly, we measure the

algorithm’s APFD which shows how quickly the prioritized order detects faults. We also present

a Correlation measure between Test Orderings that only penalizes later occurrences and not

earlier occurrence of a test.

4.1 Test Data

As mentioned in Section 1, Ordering of tests to speed up error detection is extremely

desirable in cases where software grows over iterations and requires validation in each step

to ensure no unintended behaviors are introduced. In order to evaluate the algorithms on

a representative sample, we used two repositories, ant and xml− security from Software-

Artifact Infrastructure Repository [21].

Software-Artifact Infrastructure Repository holds a curated set of Programs for use in

experimentation with testing and analysis techniques, and provides materials facilitating that

use. The Repository has Programs in several versions, with those having faults that are from

real world, faults that are seeded and faults that deal with concurrency. These Programs may

have unit tests built in that may be used to detect faults.
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ant repository is a Java-based build tool supplied by the open source Apache project. The

repository has 8 versions with 80500 LOC. The faults in the repository are seeded and has unit

tests built into it using the JUnit Framework.

xml− security is a component library implementing XML signature and encryption stan-

dards, supplied by the XML subproject of the open source Apache project. The repository has

4 versions with 16800 LOC. The faults in this repository too are seeded and has unit tests built

into it using the JUnit Framework.

Both ant and xml− security are actual open source software built collaboratively and are

used in real world. This makes them an ideal test bed for the prioritizing algorithms.

4.2 Objectives

Our end goal is to maximize the rate of fault detection by Dynamically Prioritizing Test

execution. We will detail our progress towards that goal by showing how we measure the rate

of fault detection, what our algorithms work towards, how well our algorithm achieves it’s goal

and how that translates towards speeding up fault detection.

1. To show the relation between our intermediate goal of prioritizing testing of changed code

and maximizing fault detection, we would evaluate the APFD of the Baseline Ordering.

2. The Prioritizer algorithm attempts to order tests such that any test that has changed is to

be run before those tests that have not changed, and tests that have changed more must

be executed before tests that have changed less. To evaluate this, we would be comparing

the result of the Prioritizer (Prioritized Order) against the best possible ordering of tests

(Baseline Ordering) where section of code that has changed more are tested before sections

of code that have changed less.

3. As our end goal is to speed up fault detection, the ultimate objective would be to maximize

the APFD of the Prioritized Order. To that end, we would be comparing the APFD of

Prioritized Order against the Default Order.
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4.3 Objective 1 : Validation of Reference Ordering

Our Algorithm attempts to prioritize testing of sections of the program that has changed. In

order to show that such a goal is worthwhile to purse, we will evaluate if an ordering where tests

are executed in the descending order of change measured as either set difference or positional

weighted difference provides a good rate of fault detection. Such an ordering would be called

the Baseline Ordering.

Table 4.1 lists the APFD values for both the xml− security and ant repositories, against the

Default Order (the unprioritized order in which the tests are normally run), and the Baseline

Order (the ideal order that the prioritizer algorithm hopes to achieve) for both set difference

and positional weighted difference measure.

Table 4.1: APFD values

Order
APFD

xml-sec ant

Default Order 0.1872 0.353

Baseline Order
set-diff 0.9216 0.4201

pos-w 0.8949 0.7155

We can observe that the Default Order has a very low rate of fault discovery of 0.1872

and 0.353 respectively. The best achievable change prioritizing order for both set− diff and

pos− w improves on this value. While set− diff does improve the APFD value significantly

for xml− security, the improvement is only marginal for ant. However, pos− w has a much

more consistent and significant improvement in APFD across both repositories.

4.4 Objective 2 : Evaluation of Prioritizing Algorithm

We have seen that the targeted change metrics provide promising results. Now, we evaluate

how well our Prioritizer achieves this targeted metrics. The output of the Prioritizer is a

sequence in which tests can be executed. In order to see how effective the Prioritizer result is,

we would need a measure to evaluate how well the Prioritized Order matches to the Baseline
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Order. In this section, we define such a measure and then proceed to evaluate the output of

the prioritizer using this measure.

4.4.1 Order Relationship Measure (ORM)

Table 4.2: Sample Change Matrix

test1 test2 test3

10 30 20

Based on the distance measure between the versions of tests, there will be one or more ideal

ordering, where the tests are executed in the decreasing order of their change. For instance,

if tests test1, test2 and test3 are the tests of some repository with Change Matrix given by

Table 4.2, then the ideal order of execution where tests that have changed the most is executed

earlier than tests that have changed less would be test2, test3, test1. While such an ordering

cannot be derived until all tests have been executed, they are still a perfect candidate to

compare the results against as they form one of possibly many ideal result. We call such an

ordering of tests a Baseline Ordering, b.

To evaluate the result of each algorithm using a certain test difference measure, it would

make sense to compare the result against the Baseline Ordering for that difference measure.

The ordering of tests can be represented as ranks, where each test has a rank between

1 . . . n, where n is the number of tests. This would indicate the position where the test is

executed. And if the tests are sorted by their ranks, the result would be order in which

the tests are executed. This way, comparing the two execution orders becomes a comparison

between ranked variables [22]. As we have a reference order (Baseline Order) and we would like

to know how well we achieve that order, Ranked Correlation [22] performs such a comparison

but does so in a bi-directional way.

Spearman’s Ranked Correlation coefficient [23] for two ranked variables X and Y is defined

by

rs = 1− 6 ∗
∑

d2i (t)

n ∗ (n2 − 1)
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where, di = rg(Xi)− rg(Yi) is the difference between the two ranks of each observation and

n is the number of observations.

While comparing the two Test Orderings, it is important to note that when comparing a

Prioritized Order to a Baseline, a test in the Prioritized Order occurring earlier in the sequence

compared to its position in the Baseline, means that some other test that has to occur early

has in fact occurred later in the sequence. Thus, in order to avoid doubling penalizing a

changed order, it is enough to just count the tests that occur later in the Prioritized Order

when compared to the Baseline.

In other words, we are only interested in how one Ordering (Prioritized Order) correlates

to the other Ordering (Baseline Order) and not vice versa.

Using the above penalizing mechanism, we propose a Order Relationship Measure (ORM)

which is a modification to Spearman’s Ranked Correlation Coefficient.

rtest = 1−
6 ∗

∑
t∈S d2t

n ∗ (n2 − 1)

where, n is the number of tests, and

dt =


0 if Xt > Yt

Xt − Yt otherwise

Here the X would be the Baseline Ordering and Y would be our Prioritized Order.

Let 1, . . . , 5 be a set of tests. If the Baseline Ordering is ”12345”, then Table 4.3 shows the

rtest for a few examples.

Table 4.3: Sample ORM Values

Sequence rtest
12345 1.0

54321 0.0

51234 0.8

21453 0.75

12354 0.95

12543 0.8

14325 0.8
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The dt value for ”12345” is 0 as each test has the same rank in both sequences. Thus, rtest

is 1. Whereas for ”54321”, d1 = 0, d2 = 0, d3 = 0, d4 = 2 and d5 = 4. Thus, rtest = 1− 120
120 = 0.

Similarly, for ”12543”, the dt values that are different would be d3 = 0, d4 = 0 and d5 = 2.

This gives an rtest value of 0.8.

4.4.2 ORM of Prioritized Orders

In this section, we show how our algorithms perform for the two test difference measure,

on both the repositories.

As observed in Table 4.3, both ”12543” and ”14325” has the same rtest value of 0.8 which

shows that change in different sections of the execution sequence can lead to the same rtest

value. Thus, a Prioritized Order can have a bad sequence in the early, middle or later part of

the execution sequence. As the program may begin execution at any test, an ideal operation

of the algorithm would be a good ordering after the first test with significant change has been

detected. In order to highlight the performance of the ordering as it progresses, we would

calculate rtest values for the first 10%, and keep calculating it in bands of 10% increments.

Table 4.4 gives us the Banded Correlation Score for xml− security and Table 4.5 gives us

the Banded Correlation Score for ant. Both tables shows the ORM value for each band of given

size. Each row in the table is the ORM value of a certain percentage of the results, where the

Prioritized Order begins execution at a different test. The number at the left most column

denotes the index of such a test in the Baseline Ordering. For instance, the first row gives

us the ORM values of the Prioritized Ordering build using the set− diff measure where the

Ordering begins with the test at the 0th index in the Baseline Ordering for set− diff. This

arrangement is to show how the algorithm would perform when starting on various different test

and to evaluate how resilient the algorithm is in moving towards Baseline ordering regardless

of where the execution begins, as in real world, we would not know the test that has changed

the most until it is executed.

For each starting point, the ORM values in Tables 4.4 and 4.5 are an average of 5 runs. This

is to account for the randomness in selecting tests when all test cases have been exhausted.
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Table 4.4: Banded ORM Values for xml− security

Band 1 2 3 4 5 6 7 8 9 10 11

Size 8 16 24 32 40 48 56 64 72 80 83

set− diff 0 0.87757 0.72132 0.63317 0.58034 0.54757 0.53691 0.53314 0.53109 0.53109 0.53109 0.53109

5 0.84250 0.74588 0.66145 0.60537 0.56246 0.55335 0.55001 0.54828 0.54828 0.54828 0.54828

13 0.84715 0.74756 0.65432 0.60212 0.56009 0.54620 0.54293 0.54102 0.54102 0.54102 0.54102

17 0.81976 0.69954 0.61678 0.56430 0.54385 0.52017 0.51798 0.51632 0.51632 0.51632 0.51632

25 0.84390 0.73057 0.62672 0.57705 0.54327 0.52351 0.52208 0.51944 0.51943 0.51943 0.51943

36 0.81702 0.66094 0.58285 0.54535 0.51447 0.49815 0.49749 0.49666 0.49666 0.49666 0.49666

44 0.80918 0.68678 0.59299 0.54335 0.50289 0.48826 0.48802 0.48744 0.48744 0.48744 0.48744

58 0.80334 0.68531 0.58685 0.54814 0.52126 0.49610 0.49507 0.49446 0.49446 0.49446 0.49446

62 0.82504 0.70139 0.60858 0.55285 0.52141 0.50664 0.50390 0.50322 0.50322 0.50322 0.50322

80 0.85853 0.76541 0.67555 0.61269 0.57531 0.55398 0.55132 0.55038 0.55038 0.55038 0.55038

pos− w 0 0.85514 0.79831 0.79726 0.79302 0.78317 0.78298 0.78244 0.78193 0.78193 0.78193 0.78193

5 0.98583 0.98248 0.97991 0.97315 0.95582 0.95470 0.95274 0.95138 0.95132 0.95015 0.95015

13 0.98561 0.98227 0.97970 0.97294 0.95561 0.95449 0.95253 0.95117 0.95111 0.94994 0.94994

17 0.98561 0.98227 0.97970 0.97294 0.95561 0.95449 0.95253 0.95117 0.95111 0.94994 0.94994

25 0.98561 0.98227 0.97970 0.97294 0.95561 0.95449 0.95253 0.95117 0.95111 0.94994 0.94994

36 0.92951 0.87676 0.83695 0.82126 0.81618 0.81609 0.81412 0.81276 0.81271 0.81153 0.81153

44 0.92951 0.87676 0.83695 0.82126 0.81618 0.81609 0.81412 0.81276 0.81271 0.81153 0.81153

58 0.92951 0.87676 0.83695 0.82126 0.81618 0.81609 0.81412 0.81276 0.81271 0.81153 0.81153

62 0.97617 0.96162 0.95148 0.93566 0.89548 0.88787 0.88702 0.88575 0.88570 0.88452 0.88452

80 0.98656 0.97936 0.97454 0.96501 0.94037 0.93774 0.93405 0.93161 0.93105 0.92987 0.92987

In Table 4.4, the Prioritized Order of xml− security is divided into 11 bands. The initial

bands for set− diff have a worse ORM value than pos− w and as the bands progress, the

performance of set− diff seems to degrade faster than pos− w. Finally, pos− w results end

with a much better ORM value than set− diff. This seems to suggest that our algorithm

performs better at estimating the pos− w values than set− diff. It can be seen that with

both difference measures, regardless of the starting test, the algorithm tends to have results

with very close ORM values. This suggests that the Prioritizer is resilient in identifying the

Ordering and the starting test does not have a significant impact. This is important, as the

test with the most change cannot be used as the starting test as it cannot be identified without

running all the tests.

In Table 4.5, the Prioritized Order of ant is divided into 10 bands. Similar to xml− security,

pos− w performs much better when compared to set− diff.

These ORM scores show that when our Prioritizer algorithm operates on Positional Weighted

Difference between call sequences, they seem to have good accuracy in estimating the Baseline

Ordering.
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Table 4.5: Banded ORM Values for ant

Band 1 2 3 4 5 6 7 8 9 10

Size 88 176 264 352 440 528 616 704 792 877

set− diff 0 0.88066 0.75886 0.66664 0.61008 0.58341 0.57065 0.56144 0.55739 0.55632 0.55631

100 0.88029 0.76664 0.67570 0.62106 0.59396 0.58007 0.56949 0.56579 0.56476 0.56473

200 0.87548 0.75940 0.67131 0.61554 0.58929 0.57670 0.56643 0.56255 0.56143 0.56139

300 0.87146 0.75272 0.65893 0.60676 0.58184 0.56836 0.55789 0.55432 0.55326 0.55324

400 0.87235 0.75229 0.66349 0.60771 0.58445 0.57138 0.56052 0.55687 0.55567 0.55566

500 0.87394 0.75497 0.66669 0.61292 0.58615 0.57487 0.56420 0.56056 0.55943 0.55939

600 0.87290 0.75024 0.65959 0.60479 0.57727 0.56505 0.55523 0.55140 0.55032 0.55030

700 0.87991 0.76260 0.67030 0.61517 0.58846 0.57529 0.56536 0.56156 0.56051 0.56049

800 0.87393 0.75722 0.66816 0.61544 0.58889 0.57635 0.56567 0.56238 0.56118 0.56116

876 0.87347 0.75848 0.66798 0.61360 0.58815 0.57552 0.56470 0.56084 0.55968 0.55966

pos− w 0 0.98428 0.95120 0.93509 0.92804 0.92039 0.90961 0.90271 0.89486 0.89296 0.89287

100 0.98375 0.94915 0.93302 0.92672 0.91931 0.90717 0.89977 0.89227 0.89032 0.89024

200 0.98335 0.95016 0.93590 0.92907 0.92138 0.91020 0.90298 0.89522 0.89332 0.89326

300 0.98202 0.94657 0.92955 0.92351 0.91679 0.90522 0.89805 0.89038 0.88852 0.88842

400 0.98286 0.95249 0.93622 0.93077 0.92313 0.91259 0.90580 0.89812 0.89607 0.89598

500 0.98349 0.94920 0.93204 0.92505 0.91670 0.90543 0.89822 0.89048 0.88853 0.88846

600 0.98333 0.95135 0.93488 0.92887 0.92089 0.90937 0.90284 0.89495 0.89294 0.89285

700 0.97539 0.93485 0.91009 0.90123 0.89070 0.87821 0.87082 0.86300 0.86091 0.86086

800 0.98486 0.95235 0.93574 0.92904 0.92124 0.90953 0.90212 0.89412 0.89220 0.89212

876 0.97520 0.93187 0.90756 0.89836 0.88882 0.87592 0.86865 0.86044 0.85843 0.85833

4.5 Objective 3 : APFD of Prioritized Order

We have already shown that the ideal orderings based on descending order or change using

either Set Difference or Positional Weighted Difference yield a high rate of fault detection. We

have also shown that our algorithm performs well in estimating these ideal ordering. Now, we

will empirically show that by estimating the Baseline Ordering well, we can achieve a good

APFD for the Prioritized Order.

Table 4.4 and Table 4.5 shows us that our algorithm is not very effective in estimating

set− diff measure and hence, any improvement in APFD values by using the said measure is

not expected to be very high. However, the prioritizer algorithm is able to efficiently estimate

the pos− w measure and our conjecture is that this would give us a good improvement in

APFD. This is shown in Table 4.6 which gives us the Average, Standard Deviation, Minimum

and Maximum values of APFD and ORM values for both xml− security and ant repositories,

where a Prioritized Order from every possible starting test is considered.

For both repositories, when pos− w distance measure is used, we can observe significant

improvements to APFD values over the APFD of default execution order (See Table 4.1). On
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Table 4.6: ORM and APFD Values

Repository
APFD ORM

Avg SD Min Max Avg SD Min Max

xml-security(DTT = 103,STT = 102) set− diff 0.5285 0.0568 0.4408 0.7077 0.5217 0.0232 0.47 0.5924

(DTT = 103,STT = 1010) pos− w 0.7144 0.0989 0.5548 0.8266 0.8976 0.0572 0.8115 0.9539

ant(DTT = 103,STT = 102) set− diff 0.564 0.0231 0.5039 0.6484 0.5596 0.0043 0.5462 0.5742

(DTT = 103,STT = 109) pos− w 0.7293 0.0404 0.5719 0.8387 0.6985 0.0156 0.6587 0.7462

average, set− diff improves APFD in xml− security by 0.3413 and in ant by 0.211, whereas

pos− w has a much higher improvement of 0.5272 in xml− security and 0.3763. We will now

consider pos− w distance measure to understand the impact of the different thresholds on our

algorithm.

The outcome of Prioritization depends on multiple controllable parameters and also the

random selection of test performed by the Algorithm when no significantly close test (see

Section 3.3). The Controllable Parameters are the Starting Tests and the thresholds, STT and

DTT. It is not possible to know the best starting test ahead of time as that would require change

information to be collected ahead of test run. If STT is set to a very high value, then no change

in a test would be significant enough and each iteration of the Prioritizer would cover one test

of a different test case at a time. On the other hand, if STT is set to 0, then every discovered

test would be considered to have changed enough leading to covering an entire test case in each

iteration. Similarly, if DTT is a too low value, then no test would be considered significantly

close enough, leading to the same effect as STT set to a very high value. Whereas when DTT is

too high, then closeness would be unconstrained, and the next closest test would be picked up

each time until a test that has not changed more than STT is discovered.

4.5.1 ant : Effect of Thresholds

Table 4.7 and Table 4.8 shows us how the thresholds, STT and DTT affect the APFD and

ORM values of the Prioritized Order in ant. In Table 4.7, we fix the STT to 1010 and vary DTT

value. It can be observed that APFD and ORM values peak at different times. The maximum

average APFD of 0.7209 is achieved at DTT = 108, whereas the maximum average ORM is 0.7841
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Table 4.7: ORM and APFD Values for pos− w in ant for different DTT values with STT = 105

DTT
APFD ORM

Avg SD Min Max Avg SD Min Max

107 0.4539 0.0261 0.42 0.5164 0.5243 0.0081 0.5091 0.5373

108 0.7209 0.0547 0.6095 0.7959 0.7035 0.0117 0.7183 0.6845

109 0.6997 0.0351 0.6416 0.7515 0.7841 0.012 0.7628 0.801

No Threshold 0.6674 0.0332 0.6226 0.722 0.7772 0.0133 0.752 0.7955

and is obtained only at DTT = 109. As our ultimate goal is to maximize the APFD value, we use

DTT = 108 and observe APFD and ORM values for different STT in Table 4.8.

Table 4.8: ORM and APFD Values for pos− w in ant for different STT values with DTT = 108

STT
APFD ORM

Avg SD Min Max Avg SD Min Max

No Threshold 0.6355 0.0379 0.58355 0.7204 0.7691 0.0194 0.7339 0.7901

103 0.6329 0.0389 0.6121 0.748 0.771 0.0184 0.7346 0.7854

104 0.6235 0.0326 0.5923 0.7103 0.7728 0.0185 0.7362 0.7916

105 0.7273 0.0471 0.7831 0.6277 0.7015 0.0091 0.7169 0.6891

106 0.5619 0.0179 0.5275 0.5867 0.5894 0.0218 0.5575 0.6214

Just like with different DTT values, maximum average ORM and APFD values are obtained

at different threshold values. The maximum APFD value of 0.7273 is obtained at STT = 105,

whereas the maximum ORM value of 0.7728 is obtained at STT = 104. STT values of 102 and 103

have notably similar ORM and APFD values. This is because, at this point, the threshold is low

enough to consider that every test has changed enough.

4.5.2 xml− security : Effect of Thresholds

Now, we go through the same process with xml− security repository where we vary both

DTT and STT values in Table 4.9 and Table 4.10.

Unlike the effect of DTT on ORM and APFD in ant, in xml− security, both values obtain

their average maximum value at the same time when no threshold is used. The same applies

for STT in Table 4.10 where the maximum is at a STT of 102 and when no threshold is used.
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Table 4.9: ORM and APFD Values for pos− w in xml− security for different DTT values with

STT = 103

DTT
APFD ORM

Avg SD Min Max Avg SD Min Max

107 0.6206 0.0909 0.4671 0.7564 0.4487 0.1493 0.2553 0.7222

108 0.5477 0.1148 0.4543 0.8194 0.5011 0.23 0.202 0.9063

109 0.7204 0.0882 0.5548 0.7998 0.8882 0.062 0.782 0.9499

No Threshold 0.7343 0.095 0.5548 0.8078 0.9096 0.0561 0.8115 0.9539

Table 4.10: ORM and APFD Values for pos− w in xml− security for different STT values with

DTT = 1010

STT
APFD ORM

Avg SD Min Max Avg SD Min Max

No Threshold 0.7343 0.095 0.5548 0.8078 0.9096 0.0561 0.8115 0.9539

103 0.7343 0.09501 0.5548 0.8078 0.9096 0.0561 0.8115 0.9539

104 0.6762 0.1382 0.5066 0.8078 0.8645 0.0924 0.731 0.9464

105 0.7061 0.0812 0.6432 0.8132 0.8461 0.0345 0.8146 0.8943

106 0.5635 0.0565 0.505 0.6534 0.5925 0.0163 0.558 0.6116

4.5.3 Estimating DTT

DTT defines how close tests should be to be picked up by the Prioritizer when it looks for

tests similar to a test of interest. As it operates on the closeness between tests, the ideal

indicator for DTT would be the difference between the tests. Specifically, the measure of how

close faulty tests are to each other, and the median becomes the natural candidate to set the

cut off for difference.

Table 4.11: Statistics for pos− w Difference Values

Statistics
xml− security ant

Difference Matrix Faulty Tests Difference Matrix Faulty Tests

Median 163254 812866 13981405 32203508

Row-wise Median 20995 677119 13208850 40547112

In order to compare how the faulty tests compare against the set of all tests, we calculate

the Median values of the matrix of difference between all tests, and the matrix of difference

between faulty tests. Table 4.11 gives us the median of both matrices. We also calculate a
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Row-wise Median, were we calculate the median of the differences of each test with other tests,

and then the median of all such median values.

As we can observe, the Median values of Faulty Tests differ significantly from the Median

values of the collection of all tests. There could be no discernible relation between the two

as faults could occur in sections tested by any test. Hence, it becomes infeasible to predict

DTT with reasonable confidence. Thus, we would recommend that no threshold be used with

regards to DTT and Tables 4.7 and 4.9 show that using no threshold still gives us a very good

improvement to APFD.

4.5.4 Finding the right STT

STT is the threshold that defines how much any test must have changed in order for that test

to be considered significant. As seen in Section 3.1.1, Positional Weighted Difference assigns

difference values to tests based directly on the size of the Call Sequence. The difference value

has a potential to grow high depending on the length of the call sequence. If l is the length of the

longer call sequence, then the maximum possible size would be l+(l−1)+(l−2)+· · ·+(l−(l−1)).

Thus, the size is O(l2).

If we measure significance relative to the size of the call sequence, we could say that a good

candidate for change would be to have a sequence size greater than the bottom 10% range.

In this effect, we calculated the length of all call sequences and measured the 10th Percentile

of the lengths to be 174 and 24 for xml− security and ant respectively. The lengths are

in the order 102 and 101. By translating the call sequence size to their maximum possible

Positional Weighted Difference value, we get a threshold of 104 and 102 for xml− security

and ant respectively. 102 for ant is low enough for the threshold to be considered No Threshold.

Tables 4.8 and 4.10 shows us that the thresholds does yield us good APFD.

4.6 Performance of Prioritizer

The performance measures were collected on a computer running Fedora Linux Version 25,

with an Intel(R) Core(TM)2 Duo P7350@2.00GHz CPU and 2GB of RAM. In order to evaluate

the performance of the Prioritizer, we calculate the time taken to run all tests, the time taken
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for the prioritizer to come up with a Prioritized Order so that we may get the percentage of

extra time that would be added to run all tests with prioritization. Table 4.12 gives us the time

measurements. Here, the time taken to prioritize includes the time taken to load previously

calculated Difference Matrix to memory. As the Difference Matrix can be calculated any time

after the previous version of the software completes execution, the time taken to build the

Difference Matrix is not considered here.

Table 4.12: Execution times

xml-security ant

set-diff pos-w set-diff pos-w

Test Execution time 14930ms 180211ms

Time taken to prioritize 46ms 44ms 1511ms 6158ms

Total time taken 14976ms 14974ms 181722ms 186369ms

% of time taken by prioritizer 3% 2.9% 0.8% 3.3%

As we can see, the Prioritizer only adds at most 3.3% to the execution time of the tests.



www.manaraa.com

35

CHAPTER 5. CONCLUSION

Summary. In our work, we have provided a novel approach where the call sequence of tests

obtained during their execution is used to quantify relationship between different tests and

different versions of the same test. We have defined a data structure, Difference Matrix, that

can be used to efficiently hold and retrieve correlation values among different tests. We have

built an algorithm that operates on this data structure to consume test correlation information

and dynamically select tests in an order that prioritizes testing of sections of programs that

have changed over sections that have not changed. We have introduced a new rank relationship

measure that penalizes only those ranks that occur later than they should. This prevents doubly

penalizing a change in the execution order.

Finally, we have shown empirically that our goal of prioritizing testing of modified sections

improves fault detection by showing that our baseline orderings have significantly improved

APFD values compared to the default execution order. We also show that the output of the

prioritizer improves fault detection compared to unprioritized execution and the extend of

improvement is comparable to the extent to which the goal of prioritizing execution of changed

section is achieved.

Future Work. There is scope of improvement and further research in areas pertaining to

Test Correlation Measures and Prioritizing algorithm.

If a mapping of each test to the files it tests is maintained, by looking at how much each

file has changed between the two versions, one could identify tests that could possibly cover

sections of code that has changed the most. These tests could be used as starting tests to

maximize the chances of early discovery of changed sections of the code.

Our test correlation measures treat call sequences as either a set where order and repetitions

does not matter, or as a strict sequence where the position of the method call determines
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how much the tests differ. There is scope for experimenting with various ideas here such as,

ignoring repetitions, considering only calls to classes and not methods, considering calls to

only methods and not classes, considering the actual arguments used in the calls and so on.

The call sequences can also be treated as strings to derive test correlation values that can

be obtained by calculating the Jaccard similarity between the sequences or by calculating the

longest common subsequences between them. By treating the call sequences differently in each

of the above mentioned methods, we could learn the measure that best explains the difference

between tests. But, it is possible that different repositories could have different ideal difference

measures. Thus, the study must be extensive in observing how the call sequence difference

measures perform in various kinds of software.

Currently, the same difference measure is used to see if a test has varied significantly and

how different two tests are. It would be interesting to observe the impact of each difference

measure in both parts of the algorithm. When considering how much a test has changed, one

could ignore repetitions in call sequences and simply look for any new method calls. To do

this, one has to deal with the cardinality as the more difference measures there are, the more

combinations that becomes possible.

With enough case studies, learning algorithms could be used to clearly define the relation

between various difference measures, the thresholds and APFD.

In a large software, the call sequences obtained from tests could easily run up to millions

of methods calls. When comparing such call sequences, one could use Information Retrieval

techniques to improve the speed at which such comparisons can be made. For instance, indexing

the method calls in call sequences could lead to faster look ups. If all the method names could

be collected, a word-frequency matrix can be built where the number of times each method call

occurs in each call sequence can be calculated. This could enable estimating Jaccard similarity

values very efficiently. However, for the overhead of such techniques to be justified, the call

sequences must be sufficiently long, and the test difference measure used must not consider

the exact position of each method call as such information would not be held in Information

Retrieval techniques.
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